ring/arithmetic/bigint.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
// Copyright 2015-2023 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
//! Multi-precision integers.
//!
//! # Modular Arithmetic.
//!
//! Modular arithmetic is done in finite commutative rings ℤ/mℤ for some
//! modulus *m*. We work in finite commutative rings instead of finite fields
//! because the RSA public modulus *n* is not prime, which means ℤ/nℤ contains
//! nonzero elements that have no multiplicative inverse, so ℤ/nℤ is not a
//! finite field.
//!
//! In some calculations we need to deal with multiple rings at once. For
//! example, RSA private key operations operate in the rings ℤ/nℤ, ℤ/pℤ, and
//! ℤ/qℤ. Types and functions dealing with such rings are all parameterized
//! over a type `M` to ensure that we don't wrongly mix up the math, e.g. by
//! multiplying an element of ℤ/pℤ by an element of ℤ/qℤ modulo q. This follows
//! the "unit" pattern described in [Static checking of units in Servo].
//!
//! `Elem` also uses the static unit checking pattern to statically track the
//! Montgomery factors that need to be canceled out in each value using it's
//! `E` parameter.
//!
//! [Static checking of units in Servo]:
//! https://blog.mozilla.org/research/2014/06/23/static-checking-of-units-in-servo/
use self::boxed_limbs::BoxedLimbs;
pub(crate) use self::{
modulus::{Modulus, OwnedModulus, MODULUS_MAX_LIMBS},
private_exponent::PrivateExponent,
};
use crate::{
arithmetic::montgomery::*,
bits::BitLength,
c, error,
limb::{self, Limb, LimbMask, LIMB_BITS},
};
use alloc::vec;
use core::{marker::PhantomData, num::NonZeroU64};
mod boxed_limbs;
mod modulus;
mod private_exponent;
pub trait PublicModulus {}
/// Elements of ℤ/mℤ for some modulus *m*.
//
// Defaulting `E` to `Unencoded` is a convenience for callers from outside this
// submodule. However, for maximum clarity, we always explicitly use
// `Unencoded` within the `bigint` submodule.
pub struct Elem<M, E = Unencoded> {
limbs: BoxedLimbs<M>,
/// The number of Montgomery factors that need to be canceled out from
/// `value` to get the actual value.
encoding: PhantomData<E>,
}
// TODO: `derive(Clone)` after https://github.com/rust-lang/rust/issues/26925
// is resolved or restrict `M: Clone` and `E: Clone`.
impl<M, E> Clone for Elem<M, E> {
fn clone(&self) -> Self {
Self {
limbs: self.limbs.clone(),
encoding: self.encoding,
}
}
}
impl<M, E> Elem<M, E> {
#[inline]
pub fn is_zero(&self) -> bool {
self.limbs.is_zero()
}
}
/// Does a Montgomery reduction on `limbs` assuming they are Montgomery-encoded ('R') and assuming
/// they are the same size as `m`, but perhaps not reduced mod `m`. The result will be
/// fully reduced mod `m`.
fn from_montgomery_amm<M>(limbs: BoxedLimbs<M>, m: &Modulus<M>) -> Elem<M, Unencoded> {
debug_assert_eq!(limbs.len(), m.limbs().len());
let mut limbs = limbs;
let mut one = [0; MODULUS_MAX_LIMBS];
one[0] = 1;
let one = &one[..m.limbs().len()];
limbs_mont_mul(&mut limbs, one, m.limbs(), m.n0(), m.cpu_features());
Elem {
limbs,
encoding: PhantomData,
}
}
#[cfg(any(test, not(target_arch = "x86_64")))]
impl<M> Elem<M, R> {
#[inline]
pub fn into_unencoded(self, m: &Modulus<M>) -> Elem<M, Unencoded> {
from_montgomery_amm(self.limbs, m)
}
}
impl<M> Elem<M, Unencoded> {
pub fn from_be_bytes_padded(
input: untrusted::Input,
m: &Modulus<M>,
) -> Result<Self, error::Unspecified> {
Ok(Self {
limbs: BoxedLimbs::from_be_bytes_padded_less_than(input, m)?,
encoding: PhantomData,
})
}
#[inline]
pub fn fill_be_bytes(&self, out: &mut [u8]) {
// See Falko Strenzke, "Manger's Attack revisited", ICICS 2010.
limb::big_endian_from_limbs(&self.limbs, out)
}
fn is_one(&self) -> bool {
limb::limbs_equal_limb_constant_time(&self.limbs, 1) == LimbMask::True
}
}
pub fn elem_mul<M, AF, BF>(
a: &Elem<M, AF>,
mut b: Elem<M, BF>,
m: &Modulus<M>,
) -> Elem<M, <(AF, BF) as ProductEncoding>::Output>
where
(AF, BF): ProductEncoding,
{
limbs_mont_mul(&mut b.limbs, &a.limbs, m.limbs(), m.n0(), m.cpu_features());
Elem {
limbs: b.limbs,
encoding: PhantomData,
}
}
// r *= 2.
fn elem_double<M, AF>(r: &mut Elem<M, AF>, m: &Modulus<M>) {
limb::limbs_double_mod(&mut r.limbs, m.limbs())
}
// TODO: This is currently unused, but we intend to eventually use this to
// reduce elements (x mod q) mod p in the RSA CRT. If/when we do so, we
// should update the testing so it is reflective of that usage, instead of
// the old usage.
pub fn elem_reduced_once<A, M>(
a: &Elem<A, Unencoded>,
m: &Modulus<M>,
other_modulus_len_bits: BitLength,
) -> Elem<M, Unencoded> {
assert_eq!(m.len_bits(), other_modulus_len_bits);
let mut r = a.limbs.clone();
limb::limbs_reduce_once_constant_time(&mut r, m.limbs());
Elem {
limbs: BoxedLimbs::new_unchecked(r.into_limbs()),
encoding: PhantomData,
}
}
#[inline]
pub fn elem_reduced<Larger, Smaller>(
a: &Elem<Larger, Unencoded>,
m: &Modulus<Smaller>,
other_prime_len_bits: BitLength,
) -> Elem<Smaller, RInverse> {
// This is stricter than required mathematically but this is what we
// guarantee and this is easier to check. The real requirement is that
// that `a < m*R` where `R` is the Montgomery `R` for `m`.
assert_eq!(other_prime_len_bits, m.len_bits());
// `limbs_from_mont_in_place` requires this.
assert_eq!(a.limbs.len(), m.limbs().len() * 2);
let mut tmp = [0; MODULUS_MAX_LIMBS];
let tmp = &mut tmp[..a.limbs.len()];
tmp.copy_from_slice(&a.limbs);
let mut r = m.zero();
limbs_from_mont_in_place(&mut r.limbs, tmp, m.limbs(), m.n0());
r
}
fn elem_squared<M, E>(
mut a: Elem<M, E>,
m: &Modulus<M>,
) -> Elem<M, <(E, E) as ProductEncoding>::Output>
where
(E, E): ProductEncoding,
{
limbs_mont_square(&mut a.limbs, m.limbs(), m.n0(), m.cpu_features());
Elem {
limbs: a.limbs,
encoding: PhantomData,
}
}
pub fn elem_widen<Larger, Smaller>(
a: Elem<Smaller, Unencoded>,
m: &Modulus<Larger>,
smaller_modulus_bits: BitLength,
) -> Result<Elem<Larger, Unencoded>, error::Unspecified> {
if smaller_modulus_bits >= m.len_bits() {
return Err(error::Unspecified);
}
let mut r = m.zero();
r.limbs[..a.limbs.len()].copy_from_slice(&a.limbs);
Ok(r)
}
// TODO: Document why this works for all Montgomery factors.
pub fn elem_add<M, E>(mut a: Elem<M, E>, b: Elem<M, E>, m: &Modulus<M>) -> Elem<M, E> {
limb::limbs_add_assign_mod(&mut a.limbs, &b.limbs, m.limbs());
a
}
// TODO: Document why this works for all Montgomery factors.
pub fn elem_sub<M, E>(mut a: Elem<M, E>, b: &Elem<M, E>, m: &Modulus<M>) -> Elem<M, E> {
prefixed_extern! {
// `r` and `a` may alias.
fn LIMBS_sub_mod(
r: *mut Limb,
a: *const Limb,
b: *const Limb,
m: *const Limb,
num_limbs: c::size_t,
);
}
unsafe {
LIMBS_sub_mod(
a.limbs.as_mut_ptr(),
a.limbs.as_ptr(),
b.limbs.as_ptr(),
m.limbs().as_ptr(),
m.limbs().len(),
);
}
a
}
// The value 1, Montgomery-encoded some number of times.
pub struct One<M, E>(Elem<M, E>);
impl<M> One<M, RR> {
// Returns RR = = R**2 (mod n) where R = 2**r is the smallest power of
// 2**LIMB_BITS such that R > m.
//
// Even though the assembly on some 32-bit platforms works with 64-bit
// values, using `LIMB_BITS` here, rather than `N0::LIMBS_USED * LIMB_BITS`,
// is correct because R**2 will still be a multiple of the latter as
// `N0::LIMBS_USED` is either one or two.
pub(crate) fn newRR(m: &Modulus<M>) -> Self {
// The number of limbs in the numbers involved.
let w = m.limbs().len();
// The length of the numbers involved, in bits. R = 2**r.
let r = w * LIMB_BITS;
let mut acc: Elem<M, R> = m.zero();
m.oneR(&mut acc.limbs);
// 2**t * R can be calculated by t doublings starting with R.
//
// Choose a t that divides r and where t doublings are cheaper than 1 squaring.
//
// We could choose other values of t than w. But if t < d then the exponentiation that
// follows would require multiplications. Normally d is 1 (i.e. the modulus length is a
// power of two: RSA 1024, 2048, 4097, 8192) or 3 (RSA 1536, 3072).
//
// XXX(perf): Currently t = w / 2 is slightly faster. TODO(perf): Optimize `elem_double`
// and re-run benchmarks to rebalance this.
let t = w;
let z = w.trailing_zeros();
let d = w >> z;
debug_assert_eq!(w, d * (1 << z));
debug_assert!(d <= t);
debug_assert!(t < r);
for _ in 0..t {
elem_double(&mut acc, m);
}
// Because t | r:
//
// MontExp(2**t * R, r / t)
// = (2**t)**(r / t) * R (mod m) by definition of MontExp.
// = (2**t)**(1/t * r) * R (mod m)
// = (2**(t * 1/t))**r * R (mod m)
// = (2**1)**r * R (mod m)
// = 2**r * R (mod m)
// = R * R (mod m)
// = RR
//
// Like BoringSSL, use t = w (`m.limbs.len()`) which ensures that the exponent is a power
// of two. Consequently, there will be no multiplications in the Montgomery exponentiation;
// there will only be lg(r / t) squarings.
//
// lg(r / t)
// = lg((w * 2**b) / t)
// = lg((t * 2**b) / t)
// = lg(2**b)
// = b
// TODO(MSRV:1.67): const B: u32 = LIMB_BITS.ilog2();
const B: u32 = if cfg!(target_pointer_width = "64") {
6
} else if cfg!(target_pointer_width = "32") {
5
} else {
panic!("unsupported target_pointer_width")
};
#[allow(clippy::assertions_on_constants)]
const _LIMB_BITS_IS_2_POW_B: () = assert!(LIMB_BITS == 1 << B);
debug_assert_eq!(r, t * (1 << B));
for _ in 0..B {
acc = elem_squared(acc, m);
}
Self(Elem {
limbs: acc.limbs,
encoding: PhantomData, // PhantomData<RR>
})
}
}
impl<M> One<M, RRR> {
pub(crate) fn newRRR(One(oneRR): One<M, RR>, m: &Modulus<M>) -> Self {
Self(elem_squared(oneRR, m))
}
}
impl<M, E> AsRef<Elem<M, E>> for One<M, E> {
fn as_ref(&self) -> &Elem<M, E> {
&self.0
}
}
impl<M: PublicModulus, E> Clone for One<M, E> {
fn clone(&self) -> Self {
Self(self.0.clone())
}
}
/// Calculates base**exponent (mod m).
///
/// The run time is a function of the number of limbs in `m` and the bit
/// length and Hamming Weight of `exponent`. The bounds on `m` are pretty
/// obvious but the bounds on `exponent` are less obvious. Callers should
/// document the bounds they place on the maximum value and maximum Hamming
/// weight of `exponent`.
// TODO: The test coverage needs to be expanded, e.g. test with the largest
// accepted exponent and with the most common values of 65537 and 3.
pub(crate) fn elem_exp_vartime<M>(
base: Elem<M, R>,
exponent: NonZeroU64,
m: &Modulus<M>,
) -> Elem<M, R> {
// Use what [Knuth] calls the "S-and-X binary method", i.e. variable-time
// square-and-multiply that scans the exponent from the most significant
// bit to the least significant bit (left-to-right). Left-to-right requires
// less storage compared to right-to-left scanning, at the cost of needing
// to compute `exponent.leading_zeros()`, which we assume to be cheap.
//
// As explained in [Knuth], exponentiation by squaring is the most
// efficient algorithm when the Hamming weight is 2 or less. It isn't the
// most efficient for all other, uncommon, exponent values but any
// suboptimality is bounded at least by the small bit length of `exponent`
// as enforced by its type.
//
// This implementation is slightly simplified by taking advantage of the
// fact that we require the exponent to be a positive integer.
//
// [Knuth]: The Art of Computer Programming, Volume 2: Seminumerical
// Algorithms (3rd Edition), Section 4.6.3.
let exponent = exponent.get();
let mut acc = base.clone();
let mut bit = 1 << (64 - 1 - exponent.leading_zeros());
debug_assert!((exponent & bit) != 0);
while bit > 1 {
bit >>= 1;
acc = elem_squared(acc, m);
if (exponent & bit) != 0 {
acc = elem_mul(&base, acc, m);
}
}
acc
}
#[cfg(not(target_arch = "x86_64"))]
pub fn elem_exp_consttime<M>(
base: Elem<M, R>,
exponent: &PrivateExponent,
m: &Modulus<M>,
) -> Result<Elem<M, Unencoded>, error::Unspecified> {
use crate::{bssl, limb::Window};
const WINDOW_BITS: usize = 5;
const TABLE_ENTRIES: usize = 1 << WINDOW_BITS;
let num_limbs = m.limbs().len();
let mut table = vec![0; TABLE_ENTRIES * num_limbs];
fn gather<M>(table: &[Limb], acc: &mut Elem<M, R>, i: Window) {
prefixed_extern! {
fn LIMBS_select_512_32(
r: *mut Limb,
table: *const Limb,
num_limbs: c::size_t,
i: Window,
) -> bssl::Result;
}
Result::from(unsafe {
LIMBS_select_512_32(acc.limbs.as_mut_ptr(), table.as_ptr(), acc.limbs.len(), i)
})
.unwrap();
}
fn power<M>(
table: &[Limb],
mut acc: Elem<M, R>,
m: &Modulus<M>,
i: Window,
mut tmp: Elem<M, R>,
) -> (Elem<M, R>, Elem<M, R>) {
for _ in 0..WINDOW_BITS {
acc = elem_squared(acc, m);
}
gather(table, &mut tmp, i);
let acc = elem_mul(&tmp, acc, m);
(acc, tmp)
}
fn entry(table: &[Limb], i: usize, num_limbs: usize) -> &[Limb] {
&table[(i * num_limbs)..][..num_limbs]
}
fn entry_mut(table: &mut [Limb], i: usize, num_limbs: usize) -> &mut [Limb] {
&mut table[(i * num_limbs)..][..num_limbs]
}
// table[0] = base**0 (i.e. 1).
m.oneR(entry_mut(&mut table, 0, num_limbs));
entry_mut(&mut table, 1, num_limbs).copy_from_slice(&base.limbs);
for i in 2..TABLE_ENTRIES {
let (src1, src2) = if i % 2 == 0 {
(i / 2, i / 2)
} else {
(i - 1, 1)
};
let (previous, rest) = table.split_at_mut(num_limbs * i);
let src1 = entry(previous, src1, num_limbs);
let src2 = entry(previous, src2, num_limbs);
let dst = entry_mut(rest, 0, num_limbs);
limbs_mont_product(dst, src1, src2, m.limbs(), m.n0(), m.cpu_features());
}
let tmp = m.zero();
let mut acc = Elem {
limbs: base.limbs,
encoding: PhantomData,
};
let (acc, _) = limb::fold_5_bit_windows(
exponent.limbs(),
|initial_window| {
gather(&table, &mut acc, initial_window);
(acc, tmp)
},
|(acc, tmp), window| power(&table, acc, m, window, tmp),
);
Ok(acc.into_unencoded(m))
}
#[cfg(target_arch = "x86_64")]
pub fn elem_exp_consttime<M>(
base: Elem<M, R>,
exponent: &PrivateExponent,
m: &Modulus<M>,
) -> Result<Elem<M, Unencoded>, error::Unspecified> {
use crate::{cpu, limb::LIMB_BYTES};
// Pretty much all the math here requires CPU feature detection to have
// been done. `cpu_features` isn't threaded through all the internal
// functions, so just make it clear that it has been done at this point.
let cpu_features = m.cpu_features();
// The x86_64 assembly was written under the assumption that the input data
// is aligned to `MOD_EXP_CTIME_ALIGN` bytes, which was/is 64 in OpenSSL.
// Similarly, OpenSSL uses the x86_64 assembly functions by giving it only
// inputs `tmp`, `am`, and `np` that immediately follow the table. All the
// awkwardness here stems from trying to use the assembly code like OpenSSL
// does.
use crate::limb::Window;
const WINDOW_BITS: usize = 5;
const TABLE_ENTRIES: usize = 1 << WINDOW_BITS;
let num_limbs = m.limbs().len();
const ALIGNMENT: usize = 64;
assert_eq!(ALIGNMENT % LIMB_BYTES, 0);
let mut table = vec![0; ((TABLE_ENTRIES + 3) * num_limbs) + ALIGNMENT];
let (table, state) = {
let misalignment = (table.as_ptr() as usize) % ALIGNMENT;
let table = &mut table[((ALIGNMENT - misalignment) / LIMB_BYTES)..];
assert_eq!((table.as_ptr() as usize) % ALIGNMENT, 0);
table.split_at_mut(TABLE_ENTRIES * num_limbs)
};
fn scatter(table: &mut [Limb], acc: &[Limb], i: Window, num_limbs: usize) {
prefixed_extern! {
fn bn_scatter5(a: *const Limb, a_len: c::size_t, table: *mut Limb, i: Window);
}
unsafe { bn_scatter5(acc.as_ptr(), num_limbs, table.as_mut_ptr(), i) }
}
fn gather(table: &[Limb], acc: &mut [Limb], i: Window, num_limbs: usize) {
prefixed_extern! {
fn bn_gather5(r: *mut Limb, a_len: c::size_t, table: *const Limb, i: Window);
}
unsafe { bn_gather5(acc.as_mut_ptr(), num_limbs, table.as_ptr(), i) }
}
fn limbs_mul_mont_gather5_amm(
table: &[Limb],
acc: &mut [Limb],
base: &[Limb],
m: &[Limb],
n0: &N0,
i: Window,
num_limbs: usize,
) {
prefixed_extern! {
fn bn_mul_mont_gather5(
rp: *mut Limb,
ap: *const Limb,
table: *const Limb,
np: *const Limb,
n0: &N0,
num: c::size_t,
power: Window,
);
}
unsafe {
bn_mul_mont_gather5(
acc.as_mut_ptr(),
base.as_ptr(),
table.as_ptr(),
m.as_ptr(),
n0,
num_limbs,
i,
);
}
}
fn power_amm(
table: &[Limb],
acc: &mut [Limb],
m_cached: &[Limb],
n0: &N0,
i: Window,
num_limbs: usize,
) {
prefixed_extern! {
fn bn_power5(
r: *mut Limb,
a: *const Limb,
table: *const Limb,
n: *const Limb,
n0: &N0,
num: c::size_t,
i: Window,
);
}
unsafe {
bn_power5(
acc.as_mut_ptr(),
acc.as_ptr(),
table.as_ptr(),
m_cached.as_ptr(),
n0,
num_limbs,
i,
);
}
}
// These are named `(tmp, am, np)` in BoringSSL.
let (acc, base_cached, m_cached): (&mut [Limb], &[Limb], &[Limb]) = {
let (acc, rest) = state.split_at_mut(num_limbs);
let (base_cached, rest) = rest.split_at_mut(num_limbs);
// Upstream, the input `base` is not Montgomery-encoded, so they compute a
// Montgomery-encoded copy and store it here.
base_cached.copy_from_slice(&base.limbs);
let m_cached = &mut rest[..num_limbs];
// "To improve cache locality" according to upstream.
m_cached.copy_from_slice(m.limbs());
(acc, base_cached, m_cached)
};
let n0 = m.n0();
// Fill in all the powers of 2 of `acc` into the table using only squaring and without any
// gathering, storing the last calculated power into `acc`.
fn scatter_powers_of_2(
table: &mut [Limb],
acc: &mut [Limb],
m_cached: &[Limb],
n0: &N0,
mut i: Window,
num_limbs: usize,
cpu_features: cpu::Features,
) {
loop {
scatter(table, acc, i, num_limbs);
i *= 2;
if i >= (TABLE_ENTRIES as Window) {
break;
}
limbs_mont_square(acc, m_cached, n0, cpu_features);
}
}
// All entries in `table` will be Montgomery encoded.
// acc = table[0] = base**0 (i.e. 1).
m.oneR(acc);
scatter(table, acc, 0, num_limbs);
// acc = base**1 (i.e. base).
acc.copy_from_slice(base_cached);
// Fill in entries 1, 2, 4, 8, 16.
scatter_powers_of_2(table, acc, m_cached, n0, 1, num_limbs, cpu_features);
// Fill in entries 3, 6, 12, 24; 5, 10, 20, 30; 7, 14, 28; 9, 18; 11, 22; 13, 26; 15, 30;
// 17; 19; 21; 23; 25; 27; 29; 31.
for i in (3..(TABLE_ENTRIES as Window)).step_by(2) {
limbs_mul_mont_gather5_amm(table, acc, base_cached, m_cached, n0, i - 1, num_limbs);
scatter_powers_of_2(table, acc, m_cached, n0, i, num_limbs, cpu_features);
}
let acc = limb::fold_5_bit_windows(
exponent.limbs(),
|initial_window| {
gather(table, acc, initial_window, num_limbs);
acc
},
|acc, window| {
power_amm(table, acc, m_cached, n0, window, num_limbs);
acc
},
);
let mut r_amm = base.limbs;
r_amm.copy_from_slice(acc);
Ok(from_montgomery_amm(r_amm, m))
}
/// Verified a == b**-1 (mod m), i.e. a**-1 == b (mod m).
pub fn verify_inverses_consttime<M>(
a: &Elem<M, R>,
b: Elem<M, Unencoded>,
m: &Modulus<M>,
) -> Result<(), error::Unspecified> {
if elem_mul(a, b, m).is_one() {
Ok(())
} else {
Err(error::Unspecified)
}
}
#[inline]
pub fn elem_verify_equal_consttime<M, E>(
a: &Elem<M, E>,
b: &Elem<M, E>,
) -> Result<(), error::Unspecified> {
if limb::limbs_equal_limbs_consttime(&a.limbs, &b.limbs) == LimbMask::True {
Ok(())
} else {
Err(error::Unspecified)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{cpu, test};
// Type-level representation of an arbitrary modulus.
struct M {}
impl PublicModulus for M {}
#[test]
fn test_elem_exp_consttime() {
let cpu_features = cpu::features();
test::run(
test_file!("../../crypto/fipsmodule/bn/test/mod_exp_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
let m = consume_modulus::<M>(test_case, "M");
let m = m.modulus(cpu_features);
let expected_result = consume_elem(test_case, "ModExp", &m);
let base = consume_elem(test_case, "A", &m);
let e = {
let bytes = test_case.consume_bytes("E");
PrivateExponent::from_be_bytes_for_test_only(untrusted::Input::from(&bytes), &m)
.expect("valid exponent")
};
let base = into_encoded(base, &m);
let actual_result = elem_exp_consttime(base, &e, &m).unwrap();
assert_elem_eq(&actual_result, &expected_result);
Ok(())
},
)
}
// TODO: fn test_elem_exp_vartime() using
// "src/rsa/bigint_elem_exp_vartime_tests.txt". See that file for details.
// In the meantime, the function is tested indirectly via the RSA
// verification and signing tests.
#[test]
fn test_elem_mul() {
let cpu_features = cpu::features();
test::run(
test_file!("../../crypto/fipsmodule/bn/test/mod_mul_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
let m = consume_modulus::<M>(test_case, "M");
let m = m.modulus(cpu_features);
let expected_result = consume_elem(test_case, "ModMul", &m);
let a = consume_elem(test_case, "A", &m);
let b = consume_elem(test_case, "B", &m);
let b = into_encoded(b, &m);
let a = into_encoded(a, &m);
let actual_result = elem_mul(&a, b, &m);
let actual_result = actual_result.into_unencoded(&m);
assert_elem_eq(&actual_result, &expected_result);
Ok(())
},
)
}
#[test]
fn test_elem_squared() {
let cpu_features = cpu::features();
test::run(
test_file!("bigint_elem_squared_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
let m = consume_modulus::<M>(test_case, "M");
let m = m.modulus(cpu_features);
let expected_result = consume_elem(test_case, "ModSquare", &m);
let a = consume_elem(test_case, "A", &m);
let a = into_encoded(a, &m);
let actual_result = elem_squared(a, &m);
let actual_result = actual_result.into_unencoded(&m);
assert_elem_eq(&actual_result, &expected_result);
Ok(())
},
)
}
#[test]
fn test_elem_reduced() {
let cpu_features = cpu::features();
test::run(
test_file!("bigint_elem_reduced_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
struct M {}
let m_ = consume_modulus::<M>(test_case, "M");
let m = m_.modulus(cpu_features);
let expected_result = consume_elem(test_case, "R", &m);
let a =
consume_elem_unchecked::<M>(test_case, "A", expected_result.limbs.len() * 2);
let other_modulus_len_bits = m_.len_bits();
let actual_result = elem_reduced(&a, &m, other_modulus_len_bits);
let oneRR = One::newRR(&m);
let actual_result = elem_mul(oneRR.as_ref(), actual_result, &m);
assert_elem_eq(&actual_result, &expected_result);
Ok(())
},
)
}
#[test]
fn test_elem_reduced_once() {
let cpu_features = cpu::features();
test::run(
test_file!("bigint_elem_reduced_once_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
struct M {}
struct O {}
let m = consume_modulus::<M>(test_case, "m");
let m = m.modulus(cpu_features);
let a = consume_elem_unchecked::<O>(test_case, "a", m.limbs().len());
let expected_result = consume_elem::<M>(test_case, "r", &m);
let other_modulus_len_bits = m.len_bits();
let actual_result = elem_reduced_once(&a, &m, other_modulus_len_bits);
assert_elem_eq(&actual_result, &expected_result);
Ok(())
},
)
}
fn consume_elem<M>(
test_case: &mut test::TestCase,
name: &str,
m: &Modulus<M>,
) -> Elem<M, Unencoded> {
let value = test_case.consume_bytes(name);
Elem::from_be_bytes_padded(untrusted::Input::from(&value), m).unwrap()
}
fn consume_elem_unchecked<M>(
test_case: &mut test::TestCase,
name: &str,
num_limbs: usize,
) -> Elem<M, Unencoded> {
let bytes = test_case.consume_bytes(name);
let mut limbs = BoxedLimbs::zero(num_limbs);
limb::parse_big_endian_and_pad_consttime(untrusted::Input::from(&bytes), &mut limbs)
.unwrap();
Elem {
limbs,
encoding: PhantomData,
}
}
fn consume_modulus<M>(test_case: &mut test::TestCase, name: &str) -> OwnedModulus<M> {
let value = test_case.consume_bytes(name);
OwnedModulus::from_be_bytes(untrusted::Input::from(&value)).unwrap()
}
fn assert_elem_eq<M, E>(a: &Elem<M, E>, b: &Elem<M, E>) {
if elem_verify_equal_consttime(a, b).is_err() {
panic!("{:x?} != {:x?}", &*a.limbs, &*b.limbs);
}
}
fn into_encoded<M>(a: Elem<M, Unencoded>, m: &Modulus<M>) -> Elem<M, R> {
let oneRR = One::newRR(m);
elem_mul(oneRR.as_ref(), a, m)
}
}