ring/arithmetic/
bigint.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
// Copyright 2015-2023 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

//! Multi-precision integers.
//!
//! # Modular Arithmetic.
//!
//! Modular arithmetic is done in finite commutative rings ℤ/mℤ for some
//! modulus *m*. We work in finite commutative rings instead of finite fields
//! because the RSA public modulus *n* is not prime, which means ℤ/nℤ contains
//! nonzero elements that have no multiplicative inverse, so ℤ/nℤ is not a
//! finite field.
//!
//! In some calculations we need to deal with multiple rings at once. For
//! example, RSA private key operations operate in the rings ℤ/nℤ, ℤ/pℤ, and
//! ℤ/qℤ. Types and functions dealing with such rings are all parameterized
//! over a type `M` to ensure that we don't wrongly mix up the math, e.g. by
//! multiplying an element of ℤ/pℤ by an element of ℤ/qℤ modulo q. This follows
//! the "unit" pattern described in [Static checking of units in Servo].
//!
//! `Elem` also uses the static unit checking pattern to statically track the
//! Montgomery factors that need to be canceled out in each value using it's
//! `E` parameter.
//!
//! [Static checking of units in Servo]:
//!     https://blog.mozilla.org/research/2014/06/23/static-checking-of-units-in-servo/

use self::boxed_limbs::BoxedLimbs;
pub(crate) use self::{
    modulus::{Modulus, OwnedModulus, MODULUS_MAX_LIMBS},
    private_exponent::PrivateExponent,
};
use crate::{
    arithmetic::montgomery::*,
    bits::BitLength,
    c, error,
    limb::{self, Limb, LimbMask, LIMB_BITS},
};
use alloc::vec;
use core::{marker::PhantomData, num::NonZeroU64};

mod boxed_limbs;
mod modulus;
mod private_exponent;

pub trait PublicModulus {}

/// Elements of ℤ/mℤ for some modulus *m*.
//
// Defaulting `E` to `Unencoded` is a convenience for callers from outside this
// submodule. However, for maximum clarity, we always explicitly use
// `Unencoded` within the `bigint` submodule.
pub struct Elem<M, E = Unencoded> {
    limbs: BoxedLimbs<M>,

    /// The number of Montgomery factors that need to be canceled out from
    /// `value` to get the actual value.
    encoding: PhantomData<E>,
}

// TODO: `derive(Clone)` after https://github.com/rust-lang/rust/issues/26925
// is resolved or restrict `M: Clone` and `E: Clone`.
impl<M, E> Clone for Elem<M, E> {
    fn clone(&self) -> Self {
        Self {
            limbs: self.limbs.clone(),
            encoding: self.encoding,
        }
    }
}

impl<M, E> Elem<M, E> {
    #[inline]
    pub fn is_zero(&self) -> bool {
        self.limbs.is_zero()
    }
}

/// Does a Montgomery reduction on `limbs` assuming they are Montgomery-encoded ('R') and assuming
/// they are the same size as `m`, but perhaps not reduced mod `m`. The result will be
/// fully reduced mod `m`.
fn from_montgomery_amm<M>(limbs: BoxedLimbs<M>, m: &Modulus<M>) -> Elem<M, Unencoded> {
    debug_assert_eq!(limbs.len(), m.limbs().len());

    let mut limbs = limbs;
    let mut one = [0; MODULUS_MAX_LIMBS];
    one[0] = 1;
    let one = &one[..m.limbs().len()];
    limbs_mont_mul(&mut limbs, one, m.limbs(), m.n0(), m.cpu_features());
    Elem {
        limbs,
        encoding: PhantomData,
    }
}

#[cfg(any(test, not(target_arch = "x86_64")))]
impl<M> Elem<M, R> {
    #[inline]
    pub fn into_unencoded(self, m: &Modulus<M>) -> Elem<M, Unencoded> {
        from_montgomery_amm(self.limbs, m)
    }
}

impl<M> Elem<M, Unencoded> {
    pub fn from_be_bytes_padded(
        input: untrusted::Input,
        m: &Modulus<M>,
    ) -> Result<Self, error::Unspecified> {
        Ok(Self {
            limbs: BoxedLimbs::from_be_bytes_padded_less_than(input, m)?,
            encoding: PhantomData,
        })
    }

    #[inline]
    pub fn fill_be_bytes(&self, out: &mut [u8]) {
        // See Falko Strenzke, "Manger's Attack revisited", ICICS 2010.
        limb::big_endian_from_limbs(&self.limbs, out)
    }

    fn is_one(&self) -> bool {
        limb::limbs_equal_limb_constant_time(&self.limbs, 1) == LimbMask::True
    }
}

pub fn elem_mul<M, AF, BF>(
    a: &Elem<M, AF>,
    mut b: Elem<M, BF>,
    m: &Modulus<M>,
) -> Elem<M, <(AF, BF) as ProductEncoding>::Output>
where
    (AF, BF): ProductEncoding,
{
    limbs_mont_mul(&mut b.limbs, &a.limbs, m.limbs(), m.n0(), m.cpu_features());
    Elem {
        limbs: b.limbs,
        encoding: PhantomData,
    }
}

// r *= 2.
fn elem_double<M, AF>(r: &mut Elem<M, AF>, m: &Modulus<M>) {
    limb::limbs_double_mod(&mut r.limbs, m.limbs())
}

// TODO: This is currently unused, but we intend to eventually use this to
// reduce elements (x mod q) mod p in the RSA CRT. If/when we do so, we
// should update the testing so it is reflective of that usage, instead of
// the old usage.
pub fn elem_reduced_once<A, M>(
    a: &Elem<A, Unencoded>,
    m: &Modulus<M>,
    other_modulus_len_bits: BitLength,
) -> Elem<M, Unencoded> {
    assert_eq!(m.len_bits(), other_modulus_len_bits);

    let mut r = a.limbs.clone();
    limb::limbs_reduce_once_constant_time(&mut r, m.limbs());
    Elem {
        limbs: BoxedLimbs::new_unchecked(r.into_limbs()),
        encoding: PhantomData,
    }
}

#[inline]
pub fn elem_reduced<Larger, Smaller>(
    a: &Elem<Larger, Unencoded>,
    m: &Modulus<Smaller>,
    other_prime_len_bits: BitLength,
) -> Elem<Smaller, RInverse> {
    // This is stricter than required mathematically but this is what we
    // guarantee and this is easier to check. The real requirement is that
    // that `a < m*R` where `R` is the Montgomery `R` for `m`.
    assert_eq!(other_prime_len_bits, m.len_bits());

    // `limbs_from_mont_in_place` requires this.
    assert_eq!(a.limbs.len(), m.limbs().len() * 2);

    let mut tmp = [0; MODULUS_MAX_LIMBS];
    let tmp = &mut tmp[..a.limbs.len()];
    tmp.copy_from_slice(&a.limbs);

    let mut r = m.zero();
    limbs_from_mont_in_place(&mut r.limbs, tmp, m.limbs(), m.n0());
    r
}

fn elem_squared<M, E>(
    mut a: Elem<M, E>,
    m: &Modulus<M>,
) -> Elem<M, <(E, E) as ProductEncoding>::Output>
where
    (E, E): ProductEncoding,
{
    limbs_mont_square(&mut a.limbs, m.limbs(), m.n0(), m.cpu_features());
    Elem {
        limbs: a.limbs,
        encoding: PhantomData,
    }
}

pub fn elem_widen<Larger, Smaller>(
    a: Elem<Smaller, Unencoded>,
    m: &Modulus<Larger>,
    smaller_modulus_bits: BitLength,
) -> Result<Elem<Larger, Unencoded>, error::Unspecified> {
    if smaller_modulus_bits >= m.len_bits() {
        return Err(error::Unspecified);
    }
    let mut r = m.zero();
    r.limbs[..a.limbs.len()].copy_from_slice(&a.limbs);
    Ok(r)
}

// TODO: Document why this works for all Montgomery factors.
pub fn elem_add<M, E>(mut a: Elem<M, E>, b: Elem<M, E>, m: &Modulus<M>) -> Elem<M, E> {
    limb::limbs_add_assign_mod(&mut a.limbs, &b.limbs, m.limbs());
    a
}

// TODO: Document why this works for all Montgomery factors.
pub fn elem_sub<M, E>(mut a: Elem<M, E>, b: &Elem<M, E>, m: &Modulus<M>) -> Elem<M, E> {
    prefixed_extern! {
        // `r` and `a` may alias.
        fn LIMBS_sub_mod(
            r: *mut Limb,
            a: *const Limb,
            b: *const Limb,
            m: *const Limb,
            num_limbs: c::size_t,
        );
    }
    unsafe {
        LIMBS_sub_mod(
            a.limbs.as_mut_ptr(),
            a.limbs.as_ptr(),
            b.limbs.as_ptr(),
            m.limbs().as_ptr(),
            m.limbs().len(),
        );
    }
    a
}

// The value 1, Montgomery-encoded some number of times.
pub struct One<M, E>(Elem<M, E>);

impl<M> One<M, RR> {
    // Returns RR = = R**2 (mod n) where R = 2**r is the smallest power of
    // 2**LIMB_BITS such that R > m.
    //
    // Even though the assembly on some 32-bit platforms works with 64-bit
    // values, using `LIMB_BITS` here, rather than `N0::LIMBS_USED * LIMB_BITS`,
    // is correct because R**2 will still be a multiple of the latter as
    // `N0::LIMBS_USED` is either one or two.
    pub(crate) fn newRR(m: &Modulus<M>) -> Self {
        // The number of limbs in the numbers involved.
        let w = m.limbs().len();

        // The length of the numbers involved, in bits. R = 2**r.
        let r = w * LIMB_BITS;

        let mut acc: Elem<M, R> = m.zero();
        m.oneR(&mut acc.limbs);

        // 2**t * R can be calculated by t doublings starting with R.
        //
        // Choose a t that divides r and where t doublings are cheaper than 1 squaring.
        //
        // We could choose other values of t than w. But if t < d then the exponentiation that
        // follows would require multiplications. Normally d is 1 (i.e. the modulus length is a
        // power of two: RSA 1024, 2048, 4097, 8192) or 3 (RSA 1536, 3072).
        //
        // XXX(perf): Currently t = w / 2 is slightly faster. TODO(perf): Optimize `elem_double`
        // and re-run benchmarks to rebalance this.
        let t = w;
        let z = w.trailing_zeros();
        let d = w >> z;
        debug_assert_eq!(w, d * (1 << z));
        debug_assert!(d <= t);
        debug_assert!(t < r);
        for _ in 0..t {
            elem_double(&mut acc, m);
        }

        // Because t | r:
        //
        //     MontExp(2**t * R, r / t)
        //   = (2**t)**(r / t)   * R (mod m) by definition of MontExp.
        //   = (2**t)**(1/t * r) * R (mod m)
        //   = (2**(t * 1/t))**r * R (mod m)
        //   = (2**1)**r         * R (mod m)
        //   = 2**r              * R (mod m)
        //   = R * R                 (mod m)
        //   = RR
        //
        // Like BoringSSL, use t = w (`m.limbs.len()`) which ensures that the exponent is a power
        // of two. Consequently, there will be no multiplications in the Montgomery exponentiation;
        // there will only be lg(r / t) squarings.
        //
        //     lg(r / t)
        //   = lg((w * 2**b) / t)
        //   = lg((t * 2**b) / t)
        //   = lg(2**b)
        //   = b
        // TODO(MSRV:1.67): const B: u32 = LIMB_BITS.ilog2();
        const B: u32 = if cfg!(target_pointer_width = "64") {
            6
        } else if cfg!(target_pointer_width = "32") {
            5
        } else {
            panic!("unsupported target_pointer_width")
        };
        #[allow(clippy::assertions_on_constants)]
        const _LIMB_BITS_IS_2_POW_B: () = assert!(LIMB_BITS == 1 << B);
        debug_assert_eq!(r, t * (1 << B));
        for _ in 0..B {
            acc = elem_squared(acc, m);
        }

        Self(Elem {
            limbs: acc.limbs,
            encoding: PhantomData, // PhantomData<RR>
        })
    }
}

impl<M> One<M, RRR> {
    pub(crate) fn newRRR(One(oneRR): One<M, RR>, m: &Modulus<M>) -> Self {
        Self(elem_squared(oneRR, m))
    }
}

impl<M, E> AsRef<Elem<M, E>> for One<M, E> {
    fn as_ref(&self) -> &Elem<M, E> {
        &self.0
    }
}

impl<M: PublicModulus, E> Clone for One<M, E> {
    fn clone(&self) -> Self {
        Self(self.0.clone())
    }
}

/// Calculates base**exponent (mod m).
///
/// The run time  is a function of the number of limbs in `m` and the bit
/// length and Hamming Weight of `exponent`. The bounds on `m` are pretty
/// obvious but the bounds on `exponent` are less obvious. Callers should
/// document the bounds they place on the maximum value and maximum Hamming
/// weight of `exponent`.
// TODO: The test coverage needs to be expanded, e.g. test with the largest
// accepted exponent and with the most common values of 65537 and 3.
pub(crate) fn elem_exp_vartime<M>(
    base: Elem<M, R>,
    exponent: NonZeroU64,
    m: &Modulus<M>,
) -> Elem<M, R> {
    // Use what [Knuth] calls the "S-and-X binary method", i.e. variable-time
    // square-and-multiply that scans the exponent from the most significant
    // bit to the least significant bit (left-to-right). Left-to-right requires
    // less storage compared to right-to-left scanning, at the cost of needing
    // to compute `exponent.leading_zeros()`, which we assume to be cheap.
    //
    // As explained in [Knuth], exponentiation by squaring is the most
    // efficient algorithm when the Hamming weight is 2 or less. It isn't the
    // most efficient for all other, uncommon, exponent values but any
    // suboptimality is bounded at least by the small bit length of `exponent`
    // as enforced by its type.
    //
    // This implementation is slightly simplified by taking advantage of the
    // fact that we require the exponent to be a positive integer.
    //
    // [Knuth]: The Art of Computer Programming, Volume 2: Seminumerical
    //          Algorithms (3rd Edition), Section 4.6.3.
    let exponent = exponent.get();
    let mut acc = base.clone();
    let mut bit = 1 << (64 - 1 - exponent.leading_zeros());
    debug_assert!((exponent & bit) != 0);
    while bit > 1 {
        bit >>= 1;
        acc = elem_squared(acc, m);
        if (exponent & bit) != 0 {
            acc = elem_mul(&base, acc, m);
        }
    }
    acc
}

#[cfg(not(target_arch = "x86_64"))]
pub fn elem_exp_consttime<M>(
    base: Elem<M, R>,
    exponent: &PrivateExponent,
    m: &Modulus<M>,
) -> Result<Elem<M, Unencoded>, error::Unspecified> {
    use crate::{bssl, limb::Window};

    const WINDOW_BITS: usize = 5;
    const TABLE_ENTRIES: usize = 1 << WINDOW_BITS;

    let num_limbs = m.limbs().len();

    let mut table = vec![0; TABLE_ENTRIES * num_limbs];

    fn gather<M>(table: &[Limb], acc: &mut Elem<M, R>, i: Window) {
        prefixed_extern! {
            fn LIMBS_select_512_32(
                r: *mut Limb,
                table: *const Limb,
                num_limbs: c::size_t,
                i: Window,
            ) -> bssl::Result;
        }
        Result::from(unsafe {
            LIMBS_select_512_32(acc.limbs.as_mut_ptr(), table.as_ptr(), acc.limbs.len(), i)
        })
        .unwrap();
    }

    fn power<M>(
        table: &[Limb],
        mut acc: Elem<M, R>,
        m: &Modulus<M>,
        i: Window,
        mut tmp: Elem<M, R>,
    ) -> (Elem<M, R>, Elem<M, R>) {
        for _ in 0..WINDOW_BITS {
            acc = elem_squared(acc, m);
        }
        gather(table, &mut tmp, i);
        let acc = elem_mul(&tmp, acc, m);
        (acc, tmp)
    }

    fn entry(table: &[Limb], i: usize, num_limbs: usize) -> &[Limb] {
        &table[(i * num_limbs)..][..num_limbs]
    }
    fn entry_mut(table: &mut [Limb], i: usize, num_limbs: usize) -> &mut [Limb] {
        &mut table[(i * num_limbs)..][..num_limbs]
    }

    // table[0] = base**0 (i.e. 1).
    m.oneR(entry_mut(&mut table, 0, num_limbs));

    entry_mut(&mut table, 1, num_limbs).copy_from_slice(&base.limbs);
    for i in 2..TABLE_ENTRIES {
        let (src1, src2) = if i % 2 == 0 {
            (i / 2, i / 2)
        } else {
            (i - 1, 1)
        };
        let (previous, rest) = table.split_at_mut(num_limbs * i);
        let src1 = entry(previous, src1, num_limbs);
        let src2 = entry(previous, src2, num_limbs);
        let dst = entry_mut(rest, 0, num_limbs);
        limbs_mont_product(dst, src1, src2, m.limbs(), m.n0(), m.cpu_features());
    }

    let tmp = m.zero();
    let mut acc = Elem {
        limbs: base.limbs,
        encoding: PhantomData,
    };
    let (acc, _) = limb::fold_5_bit_windows(
        exponent.limbs(),
        |initial_window| {
            gather(&table, &mut acc, initial_window);
            (acc, tmp)
        },
        |(acc, tmp), window| power(&table, acc, m, window, tmp),
    );

    Ok(acc.into_unencoded(m))
}

#[cfg(target_arch = "x86_64")]
pub fn elem_exp_consttime<M>(
    base: Elem<M, R>,
    exponent: &PrivateExponent,
    m: &Modulus<M>,
) -> Result<Elem<M, Unencoded>, error::Unspecified> {
    use crate::{cpu, limb::LIMB_BYTES};

    // Pretty much all the math here requires CPU feature detection to have
    // been done. `cpu_features` isn't threaded through all the internal
    // functions, so just make it clear that it has been done at this point.
    let cpu_features = m.cpu_features();

    // The x86_64 assembly was written under the assumption that the input data
    // is aligned to `MOD_EXP_CTIME_ALIGN` bytes, which was/is 64 in OpenSSL.
    // Similarly, OpenSSL uses the x86_64 assembly functions by giving it only
    // inputs `tmp`, `am`, and `np` that immediately follow the table. All the
    // awkwardness here stems from trying to use the assembly code like OpenSSL
    // does.

    use crate::limb::Window;

    const WINDOW_BITS: usize = 5;
    const TABLE_ENTRIES: usize = 1 << WINDOW_BITS;

    let num_limbs = m.limbs().len();

    const ALIGNMENT: usize = 64;
    assert_eq!(ALIGNMENT % LIMB_BYTES, 0);
    let mut table = vec![0; ((TABLE_ENTRIES + 3) * num_limbs) + ALIGNMENT];
    let (table, state) = {
        let misalignment = (table.as_ptr() as usize) % ALIGNMENT;
        let table = &mut table[((ALIGNMENT - misalignment) / LIMB_BYTES)..];
        assert_eq!((table.as_ptr() as usize) % ALIGNMENT, 0);
        table.split_at_mut(TABLE_ENTRIES * num_limbs)
    };

    fn scatter(table: &mut [Limb], acc: &[Limb], i: Window, num_limbs: usize) {
        prefixed_extern! {
            fn bn_scatter5(a: *const Limb, a_len: c::size_t, table: *mut Limb, i: Window);
        }
        unsafe { bn_scatter5(acc.as_ptr(), num_limbs, table.as_mut_ptr(), i) }
    }

    fn gather(table: &[Limb], acc: &mut [Limb], i: Window, num_limbs: usize) {
        prefixed_extern! {
            fn bn_gather5(r: *mut Limb, a_len: c::size_t, table: *const Limb, i: Window);
        }
        unsafe { bn_gather5(acc.as_mut_ptr(), num_limbs, table.as_ptr(), i) }
    }

    fn limbs_mul_mont_gather5_amm(
        table: &[Limb],
        acc: &mut [Limb],
        base: &[Limb],
        m: &[Limb],
        n0: &N0,
        i: Window,
        num_limbs: usize,
    ) {
        prefixed_extern! {
            fn bn_mul_mont_gather5(
                rp: *mut Limb,
                ap: *const Limb,
                table: *const Limb,
                np: *const Limb,
                n0: &N0,
                num: c::size_t,
                power: Window,
            );
        }
        unsafe {
            bn_mul_mont_gather5(
                acc.as_mut_ptr(),
                base.as_ptr(),
                table.as_ptr(),
                m.as_ptr(),
                n0,
                num_limbs,
                i,
            );
        }
    }

    fn power_amm(
        table: &[Limb],
        acc: &mut [Limb],
        m_cached: &[Limb],
        n0: &N0,
        i: Window,
        num_limbs: usize,
    ) {
        prefixed_extern! {
            fn bn_power5(
                r: *mut Limb,
                a: *const Limb,
                table: *const Limb,
                n: *const Limb,
                n0: &N0,
                num: c::size_t,
                i: Window,
            );
        }
        unsafe {
            bn_power5(
                acc.as_mut_ptr(),
                acc.as_ptr(),
                table.as_ptr(),
                m_cached.as_ptr(),
                n0,
                num_limbs,
                i,
            );
        }
    }

    // These are named `(tmp, am, np)` in BoringSSL.
    let (acc, base_cached, m_cached): (&mut [Limb], &[Limb], &[Limb]) = {
        let (acc, rest) = state.split_at_mut(num_limbs);
        let (base_cached, rest) = rest.split_at_mut(num_limbs);

        // Upstream, the input `base` is not Montgomery-encoded, so they compute a
        // Montgomery-encoded copy and store it here.
        base_cached.copy_from_slice(&base.limbs);

        let m_cached = &mut rest[..num_limbs];
        // "To improve cache locality" according to upstream.
        m_cached.copy_from_slice(m.limbs());

        (acc, base_cached, m_cached)
    };

    let n0 = m.n0();

    // Fill in all the powers of 2 of `acc` into the table using only squaring and without any
    // gathering, storing the last calculated power into `acc`.
    fn scatter_powers_of_2(
        table: &mut [Limb],
        acc: &mut [Limb],
        m_cached: &[Limb],
        n0: &N0,
        mut i: Window,
        num_limbs: usize,
        cpu_features: cpu::Features,
    ) {
        loop {
            scatter(table, acc, i, num_limbs);
            i *= 2;
            if i >= (TABLE_ENTRIES as Window) {
                break;
            }
            limbs_mont_square(acc, m_cached, n0, cpu_features);
        }
    }

    // All entries in `table` will be Montgomery encoded.

    // acc = table[0] = base**0 (i.e. 1).
    m.oneR(acc);
    scatter(table, acc, 0, num_limbs);

    // acc = base**1 (i.e. base).
    acc.copy_from_slice(base_cached);

    // Fill in entries 1, 2, 4, 8, 16.
    scatter_powers_of_2(table, acc, m_cached, n0, 1, num_limbs, cpu_features);
    // Fill in entries 3, 6, 12, 24; 5, 10, 20, 30; 7, 14, 28; 9, 18; 11, 22; 13, 26; 15, 30;
    // 17; 19; 21; 23; 25; 27; 29; 31.
    for i in (3..(TABLE_ENTRIES as Window)).step_by(2) {
        limbs_mul_mont_gather5_amm(table, acc, base_cached, m_cached, n0, i - 1, num_limbs);
        scatter_powers_of_2(table, acc, m_cached, n0, i, num_limbs, cpu_features);
    }

    let acc = limb::fold_5_bit_windows(
        exponent.limbs(),
        |initial_window| {
            gather(table, acc, initial_window, num_limbs);
            acc
        },
        |acc, window| {
            power_amm(table, acc, m_cached, n0, window, num_limbs);
            acc
        },
    );

    let mut r_amm = base.limbs;
    r_amm.copy_from_slice(acc);

    Ok(from_montgomery_amm(r_amm, m))
}

/// Verified a == b**-1 (mod m), i.e. a**-1 == b (mod m).
pub fn verify_inverses_consttime<M>(
    a: &Elem<M, R>,
    b: Elem<M, Unencoded>,
    m: &Modulus<M>,
) -> Result<(), error::Unspecified> {
    if elem_mul(a, b, m).is_one() {
        Ok(())
    } else {
        Err(error::Unspecified)
    }
}

#[inline]
pub fn elem_verify_equal_consttime<M, E>(
    a: &Elem<M, E>,
    b: &Elem<M, E>,
) -> Result<(), error::Unspecified> {
    if limb::limbs_equal_limbs_consttime(&a.limbs, &b.limbs) == LimbMask::True {
        Ok(())
    } else {
        Err(error::Unspecified)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{cpu, test};

    // Type-level representation of an arbitrary modulus.
    struct M {}

    impl PublicModulus for M {}

    #[test]
    fn test_elem_exp_consttime() {
        let cpu_features = cpu::features();
        test::run(
            test_file!("../../crypto/fipsmodule/bn/test/mod_exp_tests.txt"),
            |section, test_case| {
                assert_eq!(section, "");

                let m = consume_modulus::<M>(test_case, "M");
                let m = m.modulus(cpu_features);
                let expected_result = consume_elem(test_case, "ModExp", &m);
                let base = consume_elem(test_case, "A", &m);
                let e = {
                    let bytes = test_case.consume_bytes("E");
                    PrivateExponent::from_be_bytes_for_test_only(untrusted::Input::from(&bytes), &m)
                        .expect("valid exponent")
                };
                let base = into_encoded(base, &m);
                let actual_result = elem_exp_consttime(base, &e, &m).unwrap();
                assert_elem_eq(&actual_result, &expected_result);

                Ok(())
            },
        )
    }

    // TODO: fn test_elem_exp_vartime() using
    // "src/rsa/bigint_elem_exp_vartime_tests.txt". See that file for details.
    // In the meantime, the function is tested indirectly via the RSA
    // verification and signing tests.
    #[test]
    fn test_elem_mul() {
        let cpu_features = cpu::features();
        test::run(
            test_file!("../../crypto/fipsmodule/bn/test/mod_mul_tests.txt"),
            |section, test_case| {
                assert_eq!(section, "");

                let m = consume_modulus::<M>(test_case, "M");
                let m = m.modulus(cpu_features);
                let expected_result = consume_elem(test_case, "ModMul", &m);
                let a = consume_elem(test_case, "A", &m);
                let b = consume_elem(test_case, "B", &m);

                let b = into_encoded(b, &m);
                let a = into_encoded(a, &m);
                let actual_result = elem_mul(&a, b, &m);
                let actual_result = actual_result.into_unencoded(&m);
                assert_elem_eq(&actual_result, &expected_result);

                Ok(())
            },
        )
    }

    #[test]
    fn test_elem_squared() {
        let cpu_features = cpu::features();
        test::run(
            test_file!("bigint_elem_squared_tests.txt"),
            |section, test_case| {
                assert_eq!(section, "");

                let m = consume_modulus::<M>(test_case, "M");
                let m = m.modulus(cpu_features);
                let expected_result = consume_elem(test_case, "ModSquare", &m);
                let a = consume_elem(test_case, "A", &m);

                let a = into_encoded(a, &m);
                let actual_result = elem_squared(a, &m);
                let actual_result = actual_result.into_unencoded(&m);
                assert_elem_eq(&actual_result, &expected_result);

                Ok(())
            },
        )
    }

    #[test]
    fn test_elem_reduced() {
        let cpu_features = cpu::features();
        test::run(
            test_file!("bigint_elem_reduced_tests.txt"),
            |section, test_case| {
                assert_eq!(section, "");

                struct M {}

                let m_ = consume_modulus::<M>(test_case, "M");
                let m = m_.modulus(cpu_features);
                let expected_result = consume_elem(test_case, "R", &m);
                let a =
                    consume_elem_unchecked::<M>(test_case, "A", expected_result.limbs.len() * 2);
                let other_modulus_len_bits = m_.len_bits();

                let actual_result = elem_reduced(&a, &m, other_modulus_len_bits);
                let oneRR = One::newRR(&m);
                let actual_result = elem_mul(oneRR.as_ref(), actual_result, &m);
                assert_elem_eq(&actual_result, &expected_result);

                Ok(())
            },
        )
    }

    #[test]
    fn test_elem_reduced_once() {
        let cpu_features = cpu::features();
        test::run(
            test_file!("bigint_elem_reduced_once_tests.txt"),
            |section, test_case| {
                assert_eq!(section, "");

                struct M {}
                struct O {}
                let m = consume_modulus::<M>(test_case, "m");
                let m = m.modulus(cpu_features);
                let a = consume_elem_unchecked::<O>(test_case, "a", m.limbs().len());
                let expected_result = consume_elem::<M>(test_case, "r", &m);
                let other_modulus_len_bits = m.len_bits();

                let actual_result = elem_reduced_once(&a, &m, other_modulus_len_bits);
                assert_elem_eq(&actual_result, &expected_result);

                Ok(())
            },
        )
    }

    fn consume_elem<M>(
        test_case: &mut test::TestCase,
        name: &str,
        m: &Modulus<M>,
    ) -> Elem<M, Unencoded> {
        let value = test_case.consume_bytes(name);
        Elem::from_be_bytes_padded(untrusted::Input::from(&value), m).unwrap()
    }

    fn consume_elem_unchecked<M>(
        test_case: &mut test::TestCase,
        name: &str,
        num_limbs: usize,
    ) -> Elem<M, Unencoded> {
        let bytes = test_case.consume_bytes(name);
        let mut limbs = BoxedLimbs::zero(num_limbs);
        limb::parse_big_endian_and_pad_consttime(untrusted::Input::from(&bytes), &mut limbs)
            .unwrap();
        Elem {
            limbs,
            encoding: PhantomData,
        }
    }

    fn consume_modulus<M>(test_case: &mut test::TestCase, name: &str) -> OwnedModulus<M> {
        let value = test_case.consume_bytes(name);
        OwnedModulus::from_be_bytes(untrusted::Input::from(&value)).unwrap()
    }

    fn assert_elem_eq<M, E>(a: &Elem<M, E>, b: &Elem<M, E>) {
        if elem_verify_equal_consttime(a, b).is_err() {
            panic!("{:x?} != {:x?}", &*a.limbs, &*b.limbs);
        }
    }

    fn into_encoded<M>(a: Elem<M, Unencoded>, m: &Modulus<M>) -> Elem<M, R> {
        let oneRR = One::newRR(m);
        elem_mul(oneRR.as_ref(), a, m)
    }
}