matrix_sdk_ui/unable_to_decrypt_hook.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
// Copyright 2024 The Matrix.org Foundation C.I.C.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! This module provides a generic interface to subscribe to unable-to-decrypt
//! events, and notable updates to such events.
//!
//! This provides a general trait that a consumer may implement, as well as
//! utilities to simplify usage of this trait.
use std::{
collections::HashMap,
sync::{Arc, Mutex},
time::{Duration, Instant},
};
use growable_bloom_filter::{GrowableBloom, GrowableBloomBuilder};
use matrix_sdk::{crypto::types::events::UtdCause, Client};
use matrix_sdk_base::{StateStoreDataKey, StateStoreDataValue, StoreError};
use ruma::{EventId, OwnedEventId};
use tokio::{
spawn,
sync::{Mutex as AsyncMutex, MutexGuard},
task::JoinHandle,
time::sleep,
};
use tracing::error;
/// A generic interface which methods get called whenever we observe a
/// unable-to-decrypt (UTD) event.
pub trait UnableToDecryptHook: std::fmt::Debug + Send + Sync {
/// Called every time the hook observes an encrypted event that couldn't be
/// decrypted.
///
/// If the hook manager was configured with a max delay, this could also
/// contain extra information for late-decrypted events. See details in
/// [`UnableToDecryptInfo::time_to_decrypt`].
fn on_utd(&self, info: UnableToDecryptInfo);
}
/// Information about an event we were unable to decrypt (UTD).
#[derive(Clone, Debug, Hash, PartialEq, Eq)]
pub struct UnableToDecryptInfo {
/// The identifier of the event that couldn't get decrypted.
pub event_id: OwnedEventId,
/// If the event could be decrypted late (that is, the event was encrypted
/// at first, but could be decrypted later on), then this indicates the
/// time it took to decrypt the event. If it is not set, this is
/// considered a definite UTD.
pub time_to_decrypt: Option<Duration>,
/// What we know about what caused this UTD. E.g. was this event sent when
/// we were not a member of this room?
pub cause: UtdCause,
}
/// Data about a UTD event which we are waiting to report to the parent hook.
#[derive(Debug)]
struct PendingUtdReport {
/// The time that we received the UTD report from the timeline code.
marked_utd_at: Instant,
/// The task that will report this UTD to the parent hook.
report_task: JoinHandle<()>,
}
/// A manager over an existing [`UnableToDecryptHook`] that deduplicates UTDs
/// on similar events, and adds basic consistency checks.
///
/// It can also implement a grace period before reporting an event as a UTD, if
/// configured with [`Self::with_max_delay`]. Instead of immediately reporting
/// the UTD, the reporting will be delayed by the max delay at most; if the
/// event could eventually get decrypted, it may be reported before the end of
/// that delay.
#[derive(Debug)]
pub struct UtdHookManager {
/// A Client associated with the UTD hook. This is used to access the store
/// which we persist our data to.
client: Client,
/// The parent hook we'll call, when we have found a unique UTD.
parent: Arc<dyn UnableToDecryptHook>,
/// An optional delay before marking the event as UTD ("grace period").
max_delay: Option<Duration>,
/// A mapping of events we're going to report as UTDs, to the tasks to do
/// so.
///
/// Note: this is empty if no [`Self::max_delay`] is set.
///
/// Note: this is theoretically unbounded in size, although this set of
/// tasks will degrow over time, as tasks expire after the max delay.
pending_delayed: Arc<Mutex<HashMap<OwnedEventId, PendingUtdReport>>>,
/// Bloom filter containing the event IDs of events which have been reported
/// as UTDs
reported_utds: Arc<AsyncMutex<GrowableBloom>>,
}
impl UtdHookManager {
/// Create a new [`UtdHookManager`] for the given hook.
///
/// A [`Client`] must also be provided; this provides a link to the
/// [`matrix_sdk_base::StateStore`] which is used to load and store the
/// persistent data.
pub fn new(parent: Arc<dyn UnableToDecryptHook>, client: Client) -> Self {
let bloom_filter =
// Some slightly arbitrarily-chosen parameters here. We specify that, after 1000
// UTDs, we want to have a false-positive rate of 1%.
//
// The GrowableBloomFilter is based on a series of (partitioned) Bloom filters;
// once the first starts getting full (the expected false-positive
// rate gets too high), it adds another Bloom filter. Each new entry
// is recorded in the most recent Bloom filter; when querying, if
// *any* of the component filters show a match, that shows
// an overall match.
//
// The first component filter is created based on the parameters we give. For
// reasons derived in the paper [1], a partitioned Bloom filter with
// target false-positive rate `P` after `n` insertions requires a
// number of slices `k` given by:
//
// k = log2(1/P) = -ln(P) / ln(2)
//
// ... where each slice has a number of bits `m` given by
//
// m = n / ln(2)
//
// We have to have a whole number of slices and bits, so the total number of
// bits M is:
//
// M = ceil(k) * ceil(m)
// = ceil(-ln(P) / ln(2)) * ceil(n / ln(2))
//
// In other words, our FP rate of 1% after 1000 insertions requires:
//
// M = ceil(-ln(0.01) / ln(2)) * ceil(1000 / ln(2))
// = 7 * 1443 = 10101 bits
//
// So our filter starts off with 1263 bytes of data (plus a little overhead).
// Once we hit 1000 UTDs, we add a second component filter with a capacity
// double that of the original and target error rate 85% of the
// original (another 2526 bytes), which then lasts us until a total
// of 3000 UTDs.
//
// [1]: https://gsd.di.uminho.pt/members/cbm/ps/dbloom.pdf
GrowableBloomBuilder::new().estimated_insertions(1000).desired_error_ratio(0.01).build();
Self {
client,
parent,
max_delay: None,
pending_delayed: Default::default(),
reported_utds: Arc::new(AsyncMutex::new(bloom_filter)),
}
}
/// Reports UTDs with the given max delay.
///
/// Note: late decryptions are always reported, even if there was a grace
/// period set for the reporting of the UTD.
pub fn with_max_delay(mut self, delay: Duration) -> Self {
self.max_delay = Some(delay);
self
}
/// Load the persistent data for the UTD hook from the store.
///
/// If the client previously used a UtdHookManager, and UTDs were
/// encountered, the data on the reported UTDs is loaded from the store.
/// Otherwise, there is no effect.
pub async fn reload_from_store(&mut self) -> Result<(), StoreError> {
let existing_data =
self.client.store().get_kv_data(StateStoreDataKey::UtdHookManagerData).await?;
if let Some(existing_data) = existing_data {
let bloom_filter = existing_data
.into_utd_hook_manager_data()
.expect("StateStore::get_kv_data should return data of the right type");
self.reported_utds = Arc::new(AsyncMutex::new(bloom_filter));
}
Ok(())
}
/// The function to call whenever a UTD is seen for the first time.
///
/// Pipe in any information that needs to be included in the final report.
pub(crate) async fn on_utd(&self, event_id: &EventId, cause: UtdCause) {
// Hold the lock on `reported_utds` throughout, to avoid races with other
// threads.
let mut reported_utds_lock = self.reported_utds.lock().await;
// Check if this, or a previous instance of UtdHookManager, has already reported
// this UTD, and bail out if not.
if reported_utds_lock.contains(event_id) {
return;
}
// Otherwise, check if we already have a task to handle this UTD.
if self.pending_delayed.lock().unwrap().contains_key(event_id) {
return;
}
let info =
UnableToDecryptInfo { event_id: event_id.to_owned(), time_to_decrypt: None, cause };
let Some(max_delay) = self.max_delay else {
// No delay: immediately report the event to the parent hook.
Self::report_utd(info, &self.parent, &self.client, &mut reported_utds_lock).await;
return;
};
// Clone data shared with the task below.
let pending_delayed = self.pending_delayed.clone();
let reported_utds = self.reported_utds.clone();
let parent = self.parent.clone();
let client = self.client.clone();
// Spawn a task that will wait for the given delay, and maybe call the parent
// hook then.
let handle = spawn(async move {
// Wait for the given delay.
sleep(max_delay).await;
// Make sure we take out the lock on `reported_utds` before removing the entry
// from `pending_delayed`, to ensure we don't race against another call to
// `on_utd` (which could otherwise see that the entry has been
// removed from `pending_delayed` but not yet added to
// `reported_utds`).
let mut reported_utds_lock = reported_utds.lock().await;
// Remove the task from the outstanding set. But if it's already been removed,
// it's been decrypted since the task was added!
if pending_delayed.lock().unwrap().remove(&info.event_id).is_some() {
Self::report_utd(info, &parent, &client, &mut reported_utds_lock).await;
}
});
// Add the task to the set of pending tasks.
self.pending_delayed.lock().unwrap().insert(
event_id.to_owned(),
PendingUtdReport { marked_utd_at: Instant::now(), report_task: handle },
);
}
/// The function to call whenever an event that was marked as a UTD has
/// eventually been decrypted.
///
/// Note: if this is called for an event that was never marked as a UTD
/// before, it has no effect.
pub(crate) async fn on_late_decrypt(&self, event_id: &EventId, cause: UtdCause) {
// Hold the lock on `reported_utds` throughout, to avoid races with other
// threads.
let mut reported_utds_lock = self.reported_utds.lock().await;
// Only let the parent hook know about the late decryption if the event is
// a pending UTD. If so, remove the event from the pending list —
// doing so will cause the reporting task to no-op if it runs.
let Some(pending_utd_report) = self.pending_delayed.lock().unwrap().remove(event_id) else {
return;
};
// We can also cancel the reporting task.
pending_utd_report.report_task.abort();
// Now we can report the late decryption.
let info = UnableToDecryptInfo {
event_id: event_id.to_owned(),
time_to_decrypt: Some(pending_utd_report.marked_utd_at.elapsed()),
cause,
};
Self::report_utd(info, &self.parent, &self.client, &mut reported_utds_lock).await;
}
/// Helper for [`UtdHookManager::on_utd`] and
/// [`UtdHookManager.on_late_decrypt`]: reports the UTD to the parent,
/// and records the event as reported.
///
/// Must be called with the lock held on [`UtdHookManager::reported_utds`],
/// and takes a `MutexGuard` to enforce that.
async fn report_utd(
info: UnableToDecryptInfo,
parent_hook: &Arc<dyn UnableToDecryptHook>,
client: &Client,
reported_utds_lock: &mut MutexGuard<'_, GrowableBloom>,
) {
let event_id = info.event_id.clone();
parent_hook.on_utd(info);
reported_utds_lock.insert(event_id);
if let Err(e) = client
.store()
.set_kv_data(
StateStoreDataKey::UtdHookManagerData,
StateStoreDataValue::UtdHookManagerData(reported_utds_lock.clone()),
)
.await
{
error!("Unable to persist UTD report data: {}", e);
}
}
}
impl Drop for UtdHookManager {
fn drop(&mut self) {
// Cancel all the outstanding delayed tasks to report UTDs.
//
// Here, we don't take the lock on `reported_utd`s (indeed, we can't, since
// `reported_utds` has an async mutex, and `drop` has to be sync), but
// that's ok. We can't race against `on_utd` or `on_late_decrypt`, since
// they both have `&self` references which mean `drop` can't be called.
// We *could* race against one of the actual tasks to report
// UTDs, but that's ok too: either the report task will bail out when it sees
// the entry has been removed from `pending_delayed` (which is fine), or the
// report task will successfully report the UTD (which is fine).
let mut pending_delayed = self.pending_delayed.lock().unwrap();
for (_, pending_utd_report) in pending_delayed.drain() {
pending_utd_report.report_task.abort();
}
}
}
#[cfg(test)]
mod tests {
use matrix_sdk::test_utils::no_retry_test_client;
use matrix_sdk_test::async_test;
use ruma::event_id;
use super::*;
#[derive(Debug, Default)]
struct Dummy {
utds: Mutex<Vec<UnableToDecryptInfo>>,
}
impl UnableToDecryptHook for Dummy {
fn on_utd(&self, info: UnableToDecryptInfo) {
self.utds.lock().unwrap().push(info);
}
}
#[async_test]
async fn test_deduplicates_utds() {
// If I create a dummy hook,
let hook = Arc::new(Dummy::default());
// And I wrap with the UtdHookManager,
let wrapper = UtdHookManager::new(hook.clone(), no_retry_test_client(None).await);
// And I call the `on_utd` method multiple times, sometimes on the same event,
wrapper.on_utd(event_id!("$1"), UtdCause::Unknown).await;
wrapper.on_utd(event_id!("$1"), UtdCause::Unknown).await;
wrapper.on_utd(event_id!("$2"), UtdCause::Unknown).await;
wrapper.on_utd(event_id!("$1"), UtdCause::Unknown).await;
wrapper.on_utd(event_id!("$2"), UtdCause::Unknown).await;
wrapper.on_utd(event_id!("$3"), UtdCause::Unknown).await;
// Then the event ids have been deduplicated,
{
let utds = hook.utds.lock().unwrap();
assert_eq!(utds.len(), 3);
assert_eq!(utds[0].event_id, event_id!("$1"));
assert_eq!(utds[1].event_id, event_id!("$2"));
assert_eq!(utds[2].event_id, event_id!("$3"));
// No event is a late-decryption event.
assert!(utds[0].time_to_decrypt.is_none());
assert!(utds[1].time_to_decrypt.is_none());
assert!(utds[2].time_to_decrypt.is_none());
}
}
#[async_test]
async fn test_deduplicates_utds_from_previous_session() {
// Use a single client for both hooks, so that both hooks are backed by the same
// memorystore.
let client = no_retry_test_client(None).await;
// Dummy hook 1, with the first UtdHookManager
{
let hook = Arc::new(Dummy::default());
let wrapper = UtdHookManager::new(hook.clone(), client.clone());
// I call it a couple of times with different events
wrapper.on_utd(event_id!("$1"), UtdCause::Unknown).await;
wrapper.on_utd(event_id!("$2"), UtdCause::Unknown).await;
// Sanity-check the reported event IDs
{
let utds = hook.utds.lock().unwrap();
assert_eq!(utds.len(), 2);
assert_eq!(utds[0].event_id, event_id!("$1"));
assert!(utds[0].time_to_decrypt.is_none());
assert_eq!(utds[1].event_id, event_id!("$2"));
assert!(utds[1].time_to_decrypt.is_none());
}
}
// Now, create a *new* hook, with a *new* UtdHookManager
{
let hook = Arc::new(Dummy::default());
let mut wrapper = UtdHookManager::new(hook.clone(), client.clone());
wrapper.reload_from_store().await.unwrap();
// Call it with more events, some of which match the previous instance
wrapper.on_utd(event_id!("$1"), UtdCause::Unknown).await;
wrapper.on_utd(event_id!("$3"), UtdCause::Unknown).await;
// Only the *new* ones should be reported
let utds = hook.utds.lock().unwrap();
assert_eq!(utds.len(), 1);
assert_eq!(utds[0].event_id, event_id!("$3"));
}
}
/// Test that UTD events which had not yet been reported in a previous
/// session, are reported in the next session.
#[async_test]
async fn test_does_not_deduplicate_late_utds_from_previous_session() {
// Use a single client for both hooks, so that both hooks are backed by the same
// memorystore.
let client = no_retry_test_client(None).await;
// Dummy hook 1, with the first UtdHookManager
{
let hook = Arc::new(Dummy::default());
let wrapper = UtdHookManager::new(hook.clone(), client.clone())
.with_max_delay(Duration::from_secs(2));
// a UTD event
wrapper.on_utd(event_id!("$1"), UtdCause::Unknown).await;
// The event ID should not yet have been reported.
{
let utds = hook.utds.lock().unwrap();
assert_eq!(utds.len(), 0);
}
}
// Now, create a *new* hook, with a *new* UtdHookManager
{
let hook = Arc::new(Dummy::default());
let mut wrapper = UtdHookManager::new(hook.clone(), client.clone());
wrapper.reload_from_store().await.unwrap();
// Call the new hook with the same event
wrapper.on_utd(event_id!("$1"), UtdCause::Unknown).await;
// And it should be reported.
sleep(Duration::from_millis(2500)).await;
let utds = hook.utds.lock().unwrap();
assert_eq!(utds.len(), 1);
assert_eq!(utds[0].event_id, event_id!("$1"));
}
}
#[async_test]
async fn test_on_late_decrypted_no_effect() {
// If I create a dummy hook,
let hook = Arc::new(Dummy::default());
// And I wrap with the UtdHookManager,
let wrapper = UtdHookManager::new(hook.clone(), no_retry_test_client(None).await);
// And I call the `on_late_decrypt` method before the event had been marked as
// utd,
wrapper.on_late_decrypt(event_id!("$1"), UtdCause::Unknown).await;
// Then nothing is registered in the parent hook.
assert!(hook.utds.lock().unwrap().is_empty());
}
#[async_test]
async fn test_on_late_decrypted_after_utd_no_grace_period() {
// If I create a dummy hook,
let hook = Arc::new(Dummy::default());
// And I wrap with the UtdHookManager,
let wrapper = UtdHookManager::new(hook.clone(), no_retry_test_client(None).await);
// And I call the `on_utd` method for an event,
wrapper.on_utd(event_id!("$1"), UtdCause::Unknown).await;
// Then the UTD has been notified, but not as late-decrypted event.
{
let utds = hook.utds.lock().unwrap();
assert_eq!(utds.len(), 1);
assert_eq!(utds[0].event_id, event_id!("$1"));
assert!(utds[0].time_to_decrypt.is_none());
}
// And when I call the `on_late_decrypt` method,
wrapper.on_late_decrypt(event_id!("$1"), UtdCause::Unknown).await;
// Then the event is not reported again as a late-decryption.
{
let utds = hook.utds.lock().unwrap();
assert_eq!(utds.len(), 1);
// The previous report is still there. (There was no grace period.)
assert_eq!(utds[0].event_id, event_id!("$1"));
assert!(utds[0].time_to_decrypt.is_none());
}
}
#[cfg(not(target_arch = "wasm32"))] // wasm32 has no time for that
#[async_test]
async fn test_delayed_utd() {
// If I create a dummy hook,
let hook = Arc::new(Dummy::default());
// And I wrap with the UtdHookManager, configured to delay reporting after 2
// seconds.
let wrapper = UtdHookManager::new(hook.clone(), no_retry_test_client(None).await)
.with_max_delay(Duration::from_secs(2));
// And I call the `on_utd` method for an event,
wrapper.on_utd(event_id!("$1"), UtdCause::Unknown).await;
// Then the UTD is not being reported immediately.
assert!(hook.utds.lock().unwrap().is_empty());
assert_eq!(wrapper.pending_delayed.lock().unwrap().len(), 1);
// If I wait for 1 second, then it's still not been notified yet.
sleep(Duration::from_secs(1)).await;
assert!(hook.utds.lock().unwrap().is_empty());
assert_eq!(wrapper.pending_delayed.lock().unwrap().len(), 1);
// But if I wait just a bit more, then it's getting notified as a definite UTD.
sleep(Duration::from_millis(1500)).await;
{
let utds = hook.utds.lock().unwrap();
assert_eq!(utds.len(), 1);
assert_eq!(utds[0].event_id, event_id!("$1"));
assert!(utds[0].time_to_decrypt.is_none());
}
assert!(wrapper.pending_delayed.lock().unwrap().is_empty());
}
#[cfg(not(target_arch = "wasm32"))] // wasm32 has no time for that
#[async_test]
async fn test_delayed_late_decryption() {
// If I create a dummy hook,
let hook = Arc::new(Dummy::default());
// And I wrap with the UtdHookManager, configured to delay reporting after 2
// seconds.
let wrapper = UtdHookManager::new(hook.clone(), no_retry_test_client(None).await)
.with_max_delay(Duration::from_secs(2));
// And I call the `on_utd` method for an event,
wrapper.on_utd(event_id!("$1"), UtdCause::Unknown).await;
// Then the UTD has not been notified quite yet.
assert!(hook.utds.lock().unwrap().is_empty());
assert_eq!(wrapper.pending_delayed.lock().unwrap().len(), 1);
// If I wait for 1 second, and mark the event as late-decrypted,
sleep(Duration::from_secs(1)).await;
wrapper.on_late_decrypt(event_id!("$1"), UtdCause::Unknown).await;
// Then it's being immediately reported as a late-decryption UTD.
{
let utds = hook.utds.lock().unwrap();
assert_eq!(utds.len(), 1);
assert_eq!(utds[0].event_id, event_id!("$1"));
assert!(utds[0].time_to_decrypt.is_some());
}
// And there aren't any pending delayed reports anymore.
assert!(wrapper.pending_delayed.lock().unwrap().is_empty());
}
}