scc/
wait_queue.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
use crate::ebr::Guard;
use crate::maybe_std::yield_now;
use std::future::Future;
use std::pin::Pin;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering::{AcqRel, Relaxed};
use std::sync::{Condvar, Mutex};
use std::task::{Context, Poll, Waker};
use std::thread;

/// `ASYNC` is a flag indicating that the referenced instance corresponds to an asynchronous
/// operation.
const ASYNC: usize = 1_usize;

/// [`WaitQueue`] implements an unfair wait queue.
///
/// The sole purpose of the data structure is to avoid busy-waiting. [`WaitQueue`] should always
/// protected by [`ebr`](crate::ebr).
#[derive(Debug, Default)]
pub(crate) struct WaitQueue {
    /// Stores the pointer value of the actual wait queue entry and a flag indicating that the
    /// entry is asynchronous.
    wait_queue: AtomicUsize,
}

impl WaitQueue {
    /// Waits for the condition to be met or signaled.
    #[inline]
    pub(crate) fn wait_sync<T, F: FnOnce() -> Result<T, ()>>(&self, f: F) -> Result<T, ()> {
        if cfg!(miri) || cfg!(feature = "loom") {
            yield_now();
            return f();
        }

        let mut current = self.wait_queue.load(Relaxed);
        let mut entry = SyncWait::new(current);
        let mut entry_mut = Pin::new(&mut entry);

        while let Err(actual) = self.wait_queue.compare_exchange_weak(
            current,
            entry_mut.as_mut().get_mut() as *mut SyncWait as usize,
            AcqRel,
            Relaxed,
        ) {
            current = actual;
            entry_mut.next.store(current, Relaxed);
        }

        // Execute the closure.
        let result = f();
        if result.is_ok() {
            self.signal();
        }

        entry_mut.wait();
        result
    }

    /// Pushes an [`AsyncWait`] into the [`WaitQueue`].
    ///
    /// If it happens to acquire the desired resource, it returns an `Ok(T)` after waking up all
    /// the entries in the [`WaitQueue`].
    #[inline]
    pub(crate) fn push_async_entry<T, F: FnOnce() -> Result<T, ()>>(
        &self,
        async_wait: &mut AsyncWait,
        f: F,
    ) -> Result<T, ()> {
        debug_assert!(async_wait.mutex.is_none());

        let mut current = self.wait_queue.load(Relaxed);
        let wait_queue_ref: &WaitQueue = self;
        async_wait.next.store(current, Relaxed);
        async_wait.mutex.replace(Mutex::new((
            Some(unsafe { std::mem::transmute::<&WaitQueue, &WaitQueue>(wait_queue_ref) }),
            None,
        )));

        while let Err(actual) = self.wait_queue.compare_exchange_weak(
            current,
            (async_wait as *mut AsyncWait as usize) | ASYNC,
            AcqRel,
            Relaxed,
        ) {
            current = actual;
            async_wait.next.store(current, Relaxed);
        }

        // Execute the closure.
        if let Ok(result) = f() {
            self.signal();
            if async_wait.try_wait() {
                async_wait.mutex.take();
                return Ok(result);
            }
            // Another task is waking up `async_wait`: dispose of `result` which is holding the
            // desired resource.
        }

        // The caller has to await.
        Err(())
    }

    /// Signals the threads in the wait queue.
    #[inline]
    pub(crate) fn signal(&self) {
        if cfg!(miri) || cfg!(feature = "loom") {
            return;
        }

        let mut current = self.wait_queue.swap(0, AcqRel);

        // Flip the queue to prioritize oldest entries.
        let mut prev = 0;
        while (current & (!ASYNC)) != 0 {
            current = if (current & ASYNC) == 0 {
                // Synchronous.
                let entry_ptr = current as *const SyncWait;
                let next = unsafe {
                    let next = (*entry_ptr).next.load(Relaxed);
                    (*entry_ptr).next.store(prev, Relaxed);
                    next
                };
                prev = current;
                next
            } else {
                // Asynchronous.
                let entry_ptr = (current & (!ASYNC)) as *const AsyncWait;
                let next = unsafe {
                    let next = (*entry_ptr).next.load(Relaxed);
                    (*entry_ptr).next.store(prev, Relaxed);
                    next
                };
                prev = current;
                next
            };
        }

        // Wake up all the tasks.
        current = prev;
        while (current & (!ASYNC)) != 0 {
            current = if (current & ASYNC) == 0 {
                // Synchronous.
                let entry_ptr = current as *const SyncWait;
                unsafe {
                    let next = (*entry_ptr).next.load(Relaxed);
                    (*entry_ptr).signal();
                    next
                }
            } else {
                // Asynchronous.
                let entry_ptr = (current & (!ASYNC)) as *const AsyncWait;
                unsafe {
                    let next = (*entry_ptr).next.load(Relaxed);
                    (*entry_ptr).signal();
                    next
                }
            };
        }
    }
}

/// [`DeriveAsyncWait`] derives a mutable reference to [`AsyncWait`].
pub(crate) trait DeriveAsyncWait {
    /// Returns a mutable reference to [`AsyncWait`] if available.
    fn derive(&mut self) -> Option<&mut AsyncWait>;
}

impl DeriveAsyncWait for Pin<&mut AsyncWait> {
    #[inline]
    fn derive(&mut self) -> Option<&mut AsyncWait> {
        unsafe { Some(self.as_mut().get_unchecked_mut()) }
    }
}

impl DeriveAsyncWait for () {
    #[inline]
    fn derive(&mut self) -> Option<&mut AsyncWait> {
        None
    }
}

/// [`AsyncWait`] is inserted into [`WaitQueue`] for the caller to await until woken up.
///
/// [`AsyncWait`] has to be pinned outside in order to use it correctly. The type is `Unpin`,
/// therefore it can be moved, however the [`DeriveAsyncWait`] trait forces [`AsyncWait`] to be
/// pinned.
#[derive(Debug, Default)]
pub(crate) struct AsyncWait {
    next: AtomicUsize,
    mutex: Option<Mutex<(Option<&'static WaitQueue>, Option<Waker>)>>,
}

impl AsyncWait {
    /// Sends a signal.
    fn signal(&self) {
        if let Some(mutex) = self.mutex.as_ref() {
            if let Ok(mut locked) = mutex.lock() {
                // Disassociate itself from the `WaitQueue`.
                locked.0.take();
                if let Some(waker) = locked.1.take() {
                    waker.wake();
                }
            }
        } else {
            unreachable!();
        }
    }

    /// Tries to receive a signal.
    fn try_wait(&self) -> bool {
        if let Some(mutex) = self.mutex.as_ref() {
            if let Ok(locked) = mutex.lock() {
                if locked.0.is_none() {
                    // The wait queue entry is not associated with any `WaitQueue`.
                    return true;
                }
            }
        }
        false
    }

    /// Pulls `self` out of the [`WaitQueue`].
    ///
    /// This method is only invoked when `self` is being dropped.
    fn pull(&self) {
        // The `WaitQueue` instance must be pinned in memory.
        let _guard = Guard::new();
        let wait_queue = if let Some(mutex) = self.mutex.as_ref() {
            if let Ok(locked) = mutex.lock() {
                locked.0
            } else {
                None
            }
        } else {
            None
        };

        if let Some(wait_queue) = wait_queue {
            wait_queue.signal();

            // Data race with another thread.
            //  - Another thread pulls `self` from the `WaitQueue` to send a signal.
            //  - This thread completes `wait_queue.signal()` which does not contain `self`
            //  - This thread drops `self`.
            //  - The other thread reads `self`.
            while !self.try_wait() {
                thread::yield_now();
            }
        }
    }
}

impl Drop for AsyncWait {
    #[inline]
    fn drop(&mut self) {
        if self.mutex.is_some() {
            self.pull();
        };
    }
}

impl Future for AsyncWait {
    type Output = ();

    #[inline]
    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        if let Some(mutex) = self.mutex.as_ref() {
            if let Ok(mut locked) = mutex.lock() {
                if locked.0.is_none() {
                    // The wait queue entry is not associated with any `WaitQueue`.
                    return Poll::Ready(());
                }
                locked.1.replace(cx.waker().clone());
            }
            Poll::Pending
        } else {
            Poll::Ready(())
        }
    }
}

/// [`SyncWait`] is inserted into [`WaitQueue`] for the caller to synchronously wait until
/// signaled.
#[derive(Debug)]
struct SyncWait {
    next: AtomicUsize,
    condvar: Condvar,
    mutex: Mutex<bool>,
}

impl SyncWait {
    /// Creates a new [`SyncWait`].
    const fn new(next: usize) -> Self {
        #[allow(clippy::mutex_atomic)]
        Self {
            next: AtomicUsize::new(next),
            condvar: Condvar::new(),
            mutex: Mutex::new(false),
        }
    }

    /// Waits for a signal.
    fn wait(&self) {
        #[allow(clippy::mutex_atomic)]
        let mut completed = unsafe { self.mutex.lock().unwrap_unchecked() };
        while !*completed {
            completed = unsafe { self.condvar.wait(completed).unwrap_unchecked() };
        }
    }

    /// Sends a signal.
    fn signal(&self) {
        #[allow(clippy::mutex_atomic)]
        let mut completed = unsafe { self.mutex.lock().unwrap_unchecked() };
        *completed = true;
        self.condvar.notify_one();
    }
}

#[cfg(not(feature = "loom"))]
#[cfg(test)]
mod test {
    use super::*;
    use std::sync::atomic::Ordering::Release;
    use std::sync::Arc;
    use std::sync::Barrier;
    use std::thread::yield_now;

    #[cfg_attr(miri, ignore)]
    #[test]
    fn wait_queue_sync() {
        let num_tasks = 8;
        let barrier = Arc::new(Barrier::new(num_tasks + 1));
        let wait_queue = Arc::new(WaitQueue::default());
        let data = Arc::new(AtomicUsize::new(0));
        let mut task_handles = Vec::with_capacity(num_tasks);
        for task_id in 1..=num_tasks {
            let barrier_clone = barrier.clone();
            let wait_queue_clone = wait_queue.clone();
            let data_clone = data.clone();
            task_handles.push(std::thread::spawn(move || {
                barrier_clone.wait();
                while wait_queue_clone
                    .wait_sync(|| {
                        if data_clone
                            .compare_exchange(task_id, task_id + 1, Relaxed, Relaxed)
                            .is_ok()
                        {
                            Ok(())
                        } else {
                            Err(())
                        }
                    })
                    .is_err()
                {
                    yield_now();
                }
                wait_queue_clone.signal();
            }));
        }

        barrier.wait();
        data.fetch_add(1, Release);
        wait_queue.signal();

        task_handles
            .into_iter()
            .for_each(|t| assert!(t.join().is_ok()));
    }

    #[cfg_attr(miri, ignore)]
    #[tokio::test(flavor = "multi_thread", worker_threads = 16)]
    async fn wait_queue_async() {
        let num_tasks = 8;
        let barrier = Arc::new(tokio::sync::Barrier::new(num_tasks + 1));
        let wait_queue = Arc::new(WaitQueue::default());
        let data = Arc::new(AtomicUsize::new(0));
        let mut task_handles = Vec::with_capacity(num_tasks);
        for task_id in 1..=num_tasks {
            let barrier_clone = barrier.clone();
            let wait_queue_clone = wait_queue.clone();
            let data_clone = data.clone();
            task_handles.push(tokio::spawn(async move {
                barrier_clone.wait().await;
                let mut async_wait = AsyncWait::default();
                let mut async_wait_pinned = Pin::new(&mut async_wait);
                while wait_queue_clone
                    .push_async_entry(&mut async_wait_pinned, || {
                        if data_clone
                            .compare_exchange(task_id, task_id + 1, Relaxed, Relaxed)
                            .is_ok()
                        {
                            Ok(())
                        } else {
                            Err(())
                        }
                    })
                    .is_err()
                {
                    async_wait_pinned.as_mut().await;
                    if data_clone.load(Relaxed) > task_id {
                        // The operation was successful, but was signaled by another thread.
                        break;
                    }
                    async_wait_pinned.mutex.take();
                }
                wait_queue_clone.signal();
            }));
        }

        barrier.wait().await;
        data.fetch_add(1, Release);
        wait_queue.signal();

        for r in futures::future::join_all(task_handles).await {
            assert!(r.is_ok());
        }
    }

    #[cfg_attr(miri, ignore)]
    #[tokio::test(flavor = "multi_thread", worker_threads = 8)]
    async fn wait_queue_async_drop() {
        let num_tasks = 8;
        let barrier = Arc::new(tokio::sync::Barrier::new(num_tasks));
        let wait_queue = Arc::new(WaitQueue::default());
        let mut task_handles = Vec::with_capacity(num_tasks);
        for task_id in 0..num_tasks {
            let barrier_clone = barrier.clone();
            let wait_queue_clone = wait_queue.clone();
            task_handles.push(tokio::spawn(async move {
                barrier_clone.wait().await;
                for _ in 0..num_tasks {
                    let mut async_wait = AsyncWait::default();
                    let mut async_wait_pinned = Pin::new(&mut async_wait);
                    if wait_queue_clone
                        .push_async_entry(&mut async_wait_pinned, || {
                            if task_id % 2 == 0 {
                                Ok(())
                            } else {
                                Err(())
                            }
                        })
                        .is_ok()
                    {
                        assert_eq!(task_id % 2, 0);
                    }
                }
                wait_queue_clone.signal();
            }));
        }

        for r in futures::future::join_all(task_handles).await {
            assert!(r.is_ok());
        }
        drop(wait_queue);
    }
}